Abstract

Franson's paradigm for nonlocal dispersion cancellation [J. D. Franson, Phys. Rev. A {\bf 45,} 3126 (1992)] is studied using two kinds of jointly Gaussian-state signal and reference beams with phase-sensitive cross correlations. The first joint signal-reference state is nonclassical, with a phase-sensitive cross correlation that is at the ultimate quantum-mechanical limit. It models the outputs obtained from continuous-wave spontaneous parametric downconversion. The second joint signal-reference state is classical---it has a proper $P$ representation---with a phase-sensitive cross correlation that is at the limit set by classical physics. Using these states we show that a version of Franson's nonlocal dispersion cancellation configuration has essentially identical quantum and classical explanations \em except rm for the contrast obtained, which is much higher in the quantum case than it is in the classical case. This work bears on Franson's recent paper [J. D. Franson, arXiv:0907:5196 [quant-ph]], which asserts that there is no classical explanation for all the features seen in quantum nonlocal dispersion cancellation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call