Abstract

PurposeThe purpose of this paper is to study the dispersion and tribological properties of liquid paraffin with aluminum nanoparticles as additive, which are prepared by the surface‐modification method using oleic acid (OA).Design/methodology/approachThe dispersion stability of aluminum nanoparticles in liquid paraffin is measured by spectrophotometry, which can be optimization by Taguchi method. The tribological properties are evaluated by using a ball‐on‐ring wear tester.FindingsThe results show that few concentrations of aluminum nanoparticles as additives in liquid paraffin have better antiwear and antifriction properties than the pure paraffin oil. Scanning electron microscopy and energy dispersive spectrometer analyses can show that the thin films on the rubbing surfaces can be formed by these aluminum nanoparticles, which not only bear the load but also separate the both interfaces, thus the wear and friction can be reduced.Originality/valueMachine components and mechanism pairs rely on high‐quality lubricants to withstand high temperature and extreme pressure. Extreme pressure and antiwear additives are typically adopted to improve the tribological performance of a fluid lubricant in reducing friction and surface damage under severe conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.