Abstract
Based on the linear response theory, we propose a resonance phonon (r-ph) approach to study the renormalized phonons in a few one-dimensional nonlinear lattices. Compared with the existing anharmonic phonon (a-ph) approach, the dispersion relations derived from this approach agree with the expectations of the effective phonon (e-ph) theory much better. The application is also largely extended, i.e., it is applicable in many extreme situations, e.g., high frequency, high temperature, etc., where the existing one can hardly work. Furthermore, two separated phonon branches (one acoustic and one optical) with a clear gap in between can be observed by the r-ph approach in a diatomic anharmonic lattice. While only one combined branch can be detected in the same lattice with both the a-ph approach and the e-ph theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.