Abstract

Three different industrially available multiwalled carbon nanotube (MWNT) materials were directly incorporated into polycarbonate by melt mixing using a small-scale compounder. Despite of similar aspect ratios the electrical percolation behaviour was different. TEM investigations reveal significant differences in the nanotube dispersion which can be attributed to different dispersability of the raw MWNT materials. It is shown that the investigation of the sedimentation behaviour of aqueous MWNT dispersions is a simple method to estimate the nanotube dispersability.The relationships between melt processing conditions and MWNT dispersion and distribution were studied on polycarbonate samples containing 0.875wt% MWNT prepared by masterbatch dilution. During melt mixing only high shear forces can provide suitable MWNT dispersion because firstly the MWNT disentanglement is facilitated and secondly secondary agglomeration is prevented. At low shear agglomeration of formerly well dispersed MWNT could be observed. During hot pressing the network or MWNT arrangement and the resulting electrical conductivity can be manipulated by the processing conditions like melt temperature and pressing speed. A certain nanotube agglomeration can enhance the development of an electrical percolated network as shown by dielectric spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call