Abstract

During embryonic brain development, groups of particular neuronal cells migrate tangentially to participate in the formation of a laminated structure. Two distinct types of tangential migration in the middle and superficial layers have been reported in the development of the avian optic tectum. Here we show the dynamics of tangential cell movement in superficial layers of developing chick optic tectum. Confocal time-lapse microscopy in organotypic slice cultures and flat-mount cultures revealed that vigorous cell migration continued during E6.5–E13.5, where horizontally elongated superficial cells spread out tangentially. Motile cells exhibited exploratory behavior in reforming the branched leading processes to determine their pathway, and intersected with each other for dispersion. At the tectal peripheral border, the cells retraced or turned around to avoid protruding over the border. The tangentially migrating cells were eventually distributed in the outer stratum griseum et fibrosum superficiale and differentiated into neurons of various morphologies. These results revealed the cellular dynamics for widespread neuronal distribution in the superficial layers of the developing optic tectum, which underline a mode of novel tangential neuronal migration in the developing brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call