Abstract

BNNS (boron nitride nanosheets)-CNF (cellulose nanofibrils) nanocomposite films have attracted increasing attention for advanced thermal management applications. However, the nanocomposite films reported so far generally suffer from unsatisfactory overall performance, especially for thermal conductivity and tensile strength. In this work, a nanocomposite film with excellent overall performance was prepared by using CCNF1.2 (carboxymethylated CNF with 1.2 mmol·g−1 carboxyl content) simultaneously as effective dispersant and reinforcement matrix for BNNS. The high aspect ratio of CCNF1.2 is primarily responsible for its excellent dispersion capability for BNNS, which provides strong steric hindrance repulsion force. Meanwhile, CCNF1.2 manifests the strongest hydrophobic-hydrophobic interactions with BNNS, and its carboxyl groups completely interact with the -OH of BNNS by hydrogen bonding. As a result, the BNNS-CCNF1.2 film (50 wt% BNNS) exhibits compacted aligned structure and superior comprehensive performance (125.0 MPa tensile strength, 17.3 W·m−1·K−1 in-plane thermal conductivity, and improved water resistance). This work demonstrates the effectiveness of CCNF in improving the overall performance of BNNS-CNF films and paves the way for their practical application in the advanced thermal management of next-generation electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.