Abstract

Motivated by (continuous) facility location, we study the problem of dispersing and grouping points on a set of segments (of streets) in the plane. In the former problem, given a set of n disjoint line segments in the plane, we investigate the problem of computing a point on each of the n segments such that the minimum Euclidean distance between any two of these points is maximized. We prove that this 2D dispersion problem is NP-hard, in fact, it is NP-hard even if all the segments are parallel and are of unit length. This is in contrast to the polynomial solvability of the corresponding 1D problem by Li and Wang (2016), where the intervals are in 1D and are all disjoint. With this result, we also show that the Independent Set problem on Colored Linear Unit Disk Graph (meaning the convex hulls of points with the same color form disjoint line segments) remains NP-hard, and the parameterized version of it is in W[2]. In the latter problem, given a set of n disjoint line segments in the plane we study the problem of computing a point on each of the n segments such that the maximum Euclidean distance between any two of these points is minimized. We present a factor-1.1547 approximation algorithm which runs in O(nlog⁡n) time. Our results can be generalized to the Manhattan distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.