Abstract
Oriented single-domain magnetic nanoparticles with a high remanence ratio Mr/Ms and maximum magnetic energy product (BH)max have attracted immense attention. However, nanoparticles easily agglomerate due to their extremely small size, which impedes the process of orientation. So manipulating the orientation of nanoparticles is still a key challenge. Here, L10-FePt single-domain nanoparticles were successfully synthesized by a chemical method in the liquid phase and nanoparticle-based anisotropic nanocomposites were obtained by dispersing the nanoparticles in liquid epoxy resin under an external magnetic field. The main factors that impact the orientation of L10-FePt single-domain nanoparticles were investigated further. It is found that the dispersibility of nanoparticles has a great impact on the degree of orientation, so do the applied magnetic field and the concentration of nanoparticles. Nanocomposites with homodisperse nanoparticles oriented under a suitable external magnetic field exhibit excellent magnetic performance, such as high coercivity Hc and remanence Mr, which gives the nanocomposites a higher (BH)max than the isotropic samples. The anisotropic nanocomposites show great potential in multifarious permanent magnet applications and fundamental research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.