Abstract
The backreaction of dispersed rigid fibers to turbulence is analyzed by means of a state-of-the-art fully coupled immersed boundary method. The following universal scenario is identified: turbulence at large scales looses a consistent part of its kinetic energy (via a Darcy friction term), which partially reappears at small scales where a new range of energy-containing scales does emerge. Large-scale mixing is thus depleted in favor of a new mixing mechanism arising at the smallest scales. Anchored fibers cause the same backreaction to turbulence as moving fibers of large inertia. Our results thus provide a link between two apparently separated realms: the one of porous media and the one of suspension dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.