Abstract

The disperse composition of trans-1,4-polyisoprene granules and supported titatium–magnesium catalyst particles in the ultrarapid polymerization of isoprene within 0.1–0.7 s is studied. It is shown that within this period the alteration of external and internal fragmentations occurs between two fractions of polymer granules that are formed by 0.1 s of polymerization and already contain significantly fragmented catalyst particles. The correlation between these processes and molecular mass characteristics of trans-1,4-polyisoprene is investigated. It is found that the external fragmentation is accompanied by a decrease in the average molecular masses of the polymer, while the internal fragmentation leads to formation of a higher molecular mass trans-1,4-polyisoprene. As a result, the fraction of polymer granules with a diameter of 7.5 μm is formed by 0.7 s of polymerization and replication to high conversions is developed on their basis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call