Abstract

Adsorption behavior and water content of adsorbed layers of four dispersants for aqueous ceramic processing were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) on alumina surfaces. The dispersants were a poly(acrylic acid), a lignosulfonate, and two hydrophilic comb copolymers with nonionic polyoxyethylene chains of different molecular weights. A Voigt model was applied to analyze the viscoelastic behavior of the adsorbed dispersant layers. The results from QCM-D were compared with viscoelastic properties determined by in situ dynamic rheology measurements of highly concentrated alumina suspensions during slip casting. The QCM-D results showed that both the poly(acrylic acid) and the lignosulfonate adsorbed in low amounts and in a flat conformation, which generated thin, highly rigid layers less than 1 nm thick. The water content of these layers was found to be around 30% for the lignosulfonate and 35% for the poly(acrylic acid). High casting rate and strength in terms of storage modulus were observed in the final consolidate of the suspensions with the two polyelectrolytes. In contrast, the high molecular weight comb copolymer adsorbed in a less elastic layer with a thickness of about 6 nm, which is enough to provide steric stabilization. The viscous behavior of this layer was attributed to high water content, which was calculated to be around 90%. Such a water-rich layer gives a lubrication effect, which allows for reorientation of particles during the consolidation process, resulting in a high final strength of the ceramic material. During consolidation, the suspension showed a slow casting rate, most likely due to rearrangement facilitated by the lubricating layer. The short-chain comb copolymer adsorbed in a 1.5 nm thick, rigid layer and gave low final strength to the consolidated suspension. It is likely that the poor consolidation behavior is caused by flocculation due to insufficient stabilization of the dispersion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call