Abstract
AbstractQuantitative information on dispersal of insects should be taken into consideration for making efficient pest management decisions. Such information was not available for the European earwig, Forficula auricularia L. (Dermaptera: Forficulidae), an important biocontrol agent in fruit orchards. A mark‐recapture experiment was carried out in Belgian orchards, where marked earwigs were released at a single point and recaptured after 1 month. Dispersal from this release point was analysed using an analytical formula of a simple diffusion model with disappearance (e.g., as a result of death) derived by Turchin & Thoeny (1993; Quantifying dispersal of southern pine beetles with mark‐recapture experiments and a diffusion model. Ecological Applications 3: 187). The cumulative number of recaptured earwigs as a function of the distance of release was used to fit the model and estimate parameters. A derived expression, in terms of these parameters, was used to estimate the frequency distribution of the population, as the radius of a circle enclosing various proportions of the earwigs’ dispersal distances. In Belgium, populations of the European earwig can have two life‐history strategies, single‐ (SBP) and double‐brood populations (DBP). Therefore, mark‐recapture experiments were carried out on both population types. We fitted data from SBP (n = 10) and DBP (n = 16) successfully in both the diffusion model and in an exponential curve. Because of the biological relevance, estimates of the diffusion model were used for calculating the frequency distributions. Males and females dispersed the same distances. No differences were found between orchards with different spatial structures (apple and pear). According to literature data, mobility of earwigs is very low compared with other arthropods, which has consequences for the efficiency of biocontrol interventions, like mass releases of earwigs or the use of hedgerows for the establishment of healthy (source) populations. Quantitative results revealed that earwigs of SBP dispersed four times further than earwigs of double‐brood populations. For instance, 95% of the population remained within a radius of 28.6 m in SBP and 7.54 m in DBP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.