Abstract

Symbiont dispersal is necessary for the maintenance of defense mutualisms in space and time, and the distribution of symbionts among hosts should be intricately tied to symbiont dispersal behaviors. However, we know surprisingly little about how most defensive symbionts find and choose advantageous hosts or what cues trigger symbionts to disperse from their current hosts. In a series of six experiments, we explored the dispersal ecology of an oligochaete worm (Chaetogaster limnaei) that protects snail hosts from infection by larval trematode parasites. Specifically, we determined the factors that affected net symbiont dispersal from a current "donor" host to a new "receiver" host. Symbionts rarely dispersed unless hosts directly came in contact with one another. However, symbionts overcame their reluctance to disperse across the open environment if the donor host died. When hosts came in direct contact, net symbiont dispersal varied with both host size and trematode infection status, whereas symbiont density did not influence the probability of symbiont dispersal. Together, these experiments show that symbiont dispersal is not a constant, random process, as is often assumed in symbiont dispersal models, but rather the probability of dispersal varies with ecological conditions and among individual hosts. The observed heterogeneity in dispersal rates among hosts may help to explain symbiont aggregation among snail hosts in nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call