Abstract

The ability of organisms to disperse across urban landscapes is theorized to be constrained by habitat fragmentation. While previous research has shown the distribution of forest patches is a determinant of dispersal patterns among forest-obligate bird species, the impacts of habitat distribution on the dispersal of “urban-adapted” species, has yet to be examined. Here, we use capture-reencounter data of birds banded over a 9-year period at six banding stations in greater Washington, DC to assess dispersal in four species of songbirds and a translocation experiment to examine the influence of land cover on movement. Point count and land cover data were used to construct habitat suitability and landscape permeability surfaces, with the latter representing potential travels costs from the capture location to the surrounding landscape. To assess how dispersal processes are affected by urban land cover, we searched for previously banded birds at sampling locations within 1.5 km of each banding station and compared the distribution of sampling locations with and without observations of previously-banded birds. We found evidence that settlement of two of four focal species, the Northern Cardinal (Cardinalis cardinalis) and Gray Catbird (Dumetella carolinensis), was more likely in sites with high relative permeability. To experimentally explore the consequences of the urban matrix habitat on movement, we attached radio transmitters to male Cardinals, translocated individuals 1.5 km across high-intensity urban, suburban, and forested landscapes, and recorded the time to return to their territory. Return time was dependent on land cover with Cardinals translocated across suburban habitats returning significantly faster than those moved across the other two land use classes. Combined, our findings suggest that, even among some “urban-adapted” species, dispersal within urban environments may be influenced by landscape structure and composition.

Highlights

  • Habitat fragmentation is hypothesized to be one of the primary mechanisms through which the expansion of urban environments has led to a global decline in biodiversity (McKinney, 2002)

  • Raster predictions of American Robin habitat suitability exhibited considerably lower variability than that of the remaining species (Figure 1). These results suggest that, given the environmental variables used to develop these models, the Northern Cardinal and House Sparrow are found in a narrower portion of environmental niche space within our study landscapes than are the Gray Catbird and American Robin

  • This study addresses the impact of urbanization on the dispersal syndromes of birds through environments of varying urban intensity—we assess patterns of settlement of migrant and resident birds one or more years after banding to evaluate dispersal, and the return time of Northern Cardinals translocated across rural, suburban, and high-intensity urban environments to explore the influence of urban land cover on movement

Read more

Summary

Introduction

Habitat fragmentation is hypothesized to be one of the primary mechanisms through which the expansion of urban environments has led to a global decline in biodiversity (McKinney, 2002). As environments are modified by urbanization, the area associated with available high quality habitat is often reduced for many species (i.e., habitat loss). Fragmentation may physically isolate patches of habitat, which decreases the structural connectivity of a landscape and may impede the movement and dispersal of individuals (Fischer and Lindenmayer, 2007). Habitat modification due to urbanization reduces habitat quality for many species and functionally isolates individuals and populations from portions of the landscape (Andren and Delin, 1994; Moilanen and Nieminen, 2002). The movement of individuals between birthplace and first breeding location (natal dispersal) or between successive breeding locations (breeding dispersal), is critical for metapopulation persistence through linking local populations and permitting gene flow across a landscape (e.g., Levins, 1969; Hanski, 1999; Clobert, 2001). As human-built habitats likely affect patterns of dispersal in many urban regions, determining how organisms disperse within such environments provides an important tool for understanding the impact of urbanization on wildlife populations (Crooks and Sanjayan, 2006)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call