Abstract

The turnover of phylogenetic clades across space is a fundamental biodiversity pattern that may depend on long-term evolutionary processes, and that has downstream effects on other aspects of diversity including species richness and community structure. Limited niche evolution and limited dispersal are two major processes causing spatial restriction, and thus turnover, of clades. We studied the determinants of clade turnover within the World's richest floristic kingdom, the Neotropics, using the palm family (Arecaceae) as a model. We show that continental-scale clade turnover is driven by a combination of limited niche evolution — with respect to temperature and soil tolerances — and limited dispersal. These findings are consistent with strong dispersal barriers within the Neotropics, and the observation that some palm lineages are most diverse in certain biomes or climates. The importance of such deep-time effects suggest that palms might be slow to adapt or disperse in response to anthropogenic climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.