Abstract
Social bot detection is essential for maintaining the safety and integrity of online social networks (OSNs). Graph neural networks (GNNs) have emerged as a promising solution. Mainstream GNN-based social bot detection methods learn rich user representations by recursively performing message passing along user-user interaction edges, where users are treated as nodes and their relationships as edges. However, these methods face challenges when detecting advanced bots interacting with genuine accounts. Interaction with real accounts results in the graph structure containing camouflaged and unreliable edges. These unreliable edges interfere with the differentiation between bot and human representations, and the iterative graph encoding process amplifies this unreliability. In this article, we propose a social Bot detection method based on Edge Confidence Evaluation (BECE). Our model incorporates an edge confidence evaluation module that assesses the reliability of the edges and identifies the unreliable edges. Specifically, we design features for edges based on the representation of user nodes and introduce parameterized Gaussian distributions to map the edge embeddings into a latent semantic space. We optimize these embeddings by minimizing Kullback-Leibler (KL) divergence from the standard distribution and evaluate their confidence based on edge representation. Experimental results on three real-world datasets demonstrate that BECE is effective and superior in social bot detection. Additionally, experimental results on six widely used GNN architectures demonstrate that our proposed edge confidence evaluation module can be used as a plug-in to improve detection performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.