Abstract
An algorithm for matching images of real world scenes is presented. The matching is a specification of the geometrical disparity between the images and may be used to partially reconstruct the three-dimensional structure of the scene. Sets of candidate matching points are selected independently in each image. These points are the locations of small, distinct features which are likely to be detectable in both images. An initial network of possible matches between the two sets of candidates is constructed. Each possible match specifies a possible disparity of a candidate point in a selected reference image. An initial estimate of the probability of each possible disparity is made, based on the similarity of subimages surrounding the points. These estimates are iteratively improved by a relaxation labeling technique making use of the local continuity property of disparity that is a consequence of the continuity of real world surfaces. The algorithm is effective for binocular parallax, motion parallax, and object motion. It quickly converges to good estimates of disparity, which reflect the spatial organization of the scene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.