Abstract

We analyzed the differentiation of hemopoietic colonies derived from human paired daughter cells. Candidate progenitor cells were isolated by use of a micromanipulation technique from cultures of My-10 antigen- positive cord blood cells. Then nine to 36 hours later, the paired daughter cells were separated with a micromanipulator and allowed to form colonies in methylcellulose medium containing erythropoietin, phytohemagglutinin leukocyte-conditioned medium, and platelet-poor plasma. The cellular composition of the colonies was determined by differentiating all of the cells of the May-Grunwald-Giemsa-stained preparation. Of a total of 75 evaluable pairs of colonies, 35 consisted of 28 types of disparate pairs revealing nonhomologous lineage combinations. Forty pairs were homologous in lineage expression. However, the proportions of the individual cell lineages were significantly different in the members of some of the homologous pairs. Some pairs revealed significant differences in colony size. These observations are similar to those reported for murine paired progenitors and are consistent with the stochastic model of human stem cell differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.