Abstract
The capsid domain (CA) of the retroviral Gag protein is a primary determinant of Gag oligomerization, which is a critical step for immature Gag lattice formation and virus particle budding. Although the human immunodeficiency virus type 1 (HIV-1) CA carboxy-terminal domain (CTD) is essential for CA-CA interactions, the CA CTD has been suggested to be largely dispensable for human T-cell leukemia virus type 1 (HTLV-1) particle biogenesis. To more clearly define the roles of the HTLV-1 CA amino-terminal domain (NTD) and CA CTD in particle biogenesis, we generated and analyzed a panel of Gag proteins with chimeric HIV-1/HTLV-1 CA domains. Subcellular distribution and protein expression levels indicated that Gag proteins with a chimeric HIV-1 CA NTD/HTLV-1 CA CTD did not result in Gag oligomerization regardless of the parent Gag background. Furthermore, chimeric Gag proteins with the HTLV-1 CA NTD produced particles phenotypically similar to HTLV-1 immature particles, highlighting the importance of the HTLV-1 CA NTD in HTLV-1 immature particle morphology. Taken together, these observations support the conclusion that the HTLV-1 CA NTD can functionally replace the HIV-1 CA CTD, but the HIV-1 CA NTD cannot replace the HTLV-1 CA CTD, indicating that the HTLV-1 CA subdomains provide distinct contributions to Gag-Gag oligomerization, particle morphology, and biogenesis. Furthermore, we have shown for the first time that HIV-1 and HTLV-1 Gag domains outside the CA (e.g., matrix and nucleocapsid) impact Gag oligomerization as well as immature particle size and morphology.IMPORTANCE A key aspect in virus replication is virus particle assembly, which is a poorly understood process for most viruses. For retroviruses, the Gag structural protein is the primary driver of virus particle biogenesis, and the CA CTD is the primary determinant of Gag-Gag interactions for HIV-1. In this study, the HTLV-1 capsid amino-terminal domain was found to provide distinct contributions to Gag-Gag oligomerization, particle morphology, and biogenesis. This study provides information that will aid efforts for discovery of therapeutic targets for intervention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.