Abstract

We postulate that the orientation of the soft supersymmetry-breaking terms in flavor space is not fixed by tree level physics at the Planck scale; it is a dynamical variable which depends on fields that have no tree level potential. These fields can be thought of as either moduli or as the Nambu-Goldstone bosons of the spontaneously broken flavor symmetry which is non-linearly realized by the soft terms. We show that the soft terms align with the quark and lepton Yukawa couplings, just as spins align with an external magnetic field. As a result, the soft terms conserve individual lepton numbers and do not cause large flavor or CP violations. The vacuum adjusts so as to allow large sparticle splittings to naturally coexist with flavor conservation. Consequently, the resulting phenomenology is different from that of minimal supersymmetric theories. We also propose theories in which the shape of the soft terms in flavor space is a dynamical variable which depends on fields that have no tree level potential. This dynamically leads to partial degeneracy among sparticles and further suppression of flavor violations. The ideas of this paper suggest a connection between the space of moduli and the spontaneously broken flavor group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.