Abstract

The disorientation of 62P1/2 cesium atoms, induced in collisions with noble gas atoms in their ground states, was systematically investigated by monitoring the depolarization of cesium resonance fluorescence in relation to noble gas pressures. The Cs atoms, contained together with a buffer gas in a fluorescence cell and located in zero magnetic field, were excited and oriented by irradiation with circularly polarized 8943 Å resonance radiation, and the resonance fluorescence, emitted in an approximately backward direction, was analyzed with respect to circular polarization. The experiments yielded the following disorientation cross sections which have been corrected for the effects of nuclear spin: Cs–He: 4.9 ± 0.7 Å2; Cs–Ne: 2.1 ± 0.3 Å2; Cs–Ar: 5.6 ± 0.8 Å2; Cs–Kr: 5.8 ± 0.9 Å2; Cs–Xe: 6.3 ± 0.9 Å2. The results are in good agreement with most of the available zero-field and low-field data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call