Abstract

The total cross sections for disorientation (σ1) and disalignment (σ2) of 42P3/2 potassium atoms, induced in collisions with the ground-state atoms, have been determined using a modified Zeeman scanning method. Potassium vapor at densities of the order of 1011 cm−3, contained in a fluorescence cell located in a kilogauss variable magnetic field, was irradiated with circularly polarized 7665 Å resonance radiation emitted from a discharge lamp located in a constant field of 5.4 kG. Scans of the variable field permitted selective excitation of single Zeeman components in the absorbing vapor. The σ+ and σ− components of the resulting resonance fluorescence emitted parallel to the scanning field were monitored in relation to the vapor density, as were the π and σ components emitted in the perpendicular direction. As the vapor density increased so did the frequency of the collisions which caused transfers among the Zeeman states in the vapor and thus disorientation and disalignment. The observed dependence of circular and linear depolarization of the fluorescence on the potassium density yielded the cross sections σ1 = 17 × 10−12 cm2 and σ2 = 21 × 10−2 cm2, corrected for imprisonment of radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.