Abstract

We study the impact of quenched random potentials and torques on scalar active matter. Microscopic simulations reveal that motility-induced phase separation is replaced in two dimensions by an asymptotically homogeneous phase with anomalous long-ranged correlations and nonvanishing steady-state currents. Using a combination of phenomenological models and a field-theoretical treatment, we show the existence of a lower-critical dimension d_{c}=4, below which phase separation is only observed for systems smaller than an Imry-Ma length scale. We identify a weak-disorder regime in which the structure factor scales as S(q)∼1/q^{2}, which accounts for our numerics. In d=2, we predict that, at larger scales, the behavior should cross over to a strong-disorder regime. In d>2, these two regimes exist separately, depending on the strength of the potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call