Abstract

Nanoindentation experiments on disordered nanoparticle packings performed both in an atomic force microscope and in situ in a transmission electron microscope are used to investigate the mechanics of plastic deformation. Under an applied load, these highly porous films exhibit load drops, the magnitudes of which are consistent with an exponential population distribution. These load drops are attributed to local rearrangements of a small number of particles, which bear similarities to shear transformation zones and to the T1 process, both of which have been previously predicted for disordered packings. An increase in the relative humidity results in an increase in the number of observed load drops, indicating that the strength of the particle interactions has a significant effect on the modes of plastic deformation. These results suggest how disordered nanoparticle packings may be expected to behave in devices operating under varying environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.