Abstract

The transformation mechanism of hexagonal delta phase from the disordered bcc gamma phase has not been reported before in the Zr-rich U–Zr alloy system. With the help of X-ray diffraction, transmission electron microscopy (TEM) and high-resolution TEM analyses it was shown that the gamma to delta conversion takes place by the lattice collapse mechanism of omega transformation. It was also ascertained that a higher aging temperature or time promotes the growth of all four variants of the delta phase within a parent gamma grain. In addition, ab initio electronic structure calculations showed that the bcc to hexagonal transformation, involving partial ordering of the parent bcc phase followed by (111) plane collapse, is energetically favorable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.