Abstract

Viscoelastic flows through microstructured geometries transition from steady to time dependent and chaotic dynamics under critical flow conditions. However, the implications of geometric disorder for flow stability are unknown. We measure the onset of spatiotemporal velocity fluctuations for a viscoelastic flow through microfluidic pillar arrays, having controlled variations of geometric disorder. Introducing a small perturbation into the pillar array (∼10% of the lattice constant) delays the onset of the instability to higher flow speed, and yet larger disorders (≥25%) suppress the transition to chaos. We show that disorder introduces preferential flow paths that promote shear over extensional deformation and enhance flow stability by locally reducing polymer stretching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.