Abstract

With reduced toxicity and tunable optoelectronic properties, mixed cation halide perovskites (MCHPs) featuring partially substituted Pb with Sn and Ge have emerged as promising candidates for photovoltaic applications. However, the introduction of the disorder through large-scale preparation and alloying strategies leads to a significant challenge in comprehending the disorder's microscopic-level impact. Here, we found that, in addition to compositional variation, a synergy of disorder and cation radii ratio significantly affects optoelectronic properties. For Pb-Ge/Ge-Sn MCHPs, severe octahedral distortion with increasing degree of disorder adjusted their bandgaps in a wide range, giving rise to large effective masses, exciton binding energies, and weak visible absorption coefficients. The synergy of disorder and distortion transforms the Wannier excitons into localized characteristics, whereas the optoelectronic properties of Pb-Sn MCHPs are modulated by the disorder. Our work highlights the role of disorder in the tunability of optoelectronic properties, providing a novel strategy for designing photovoltaic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call