Abstract

We develop the formalism for BCS–BEC crossover in the presence of weak random impurity and calculate the effect of the random potentials on the basic mean-field quantities. The disorder has been included through the Nozières and Schmitt–Rink theory of superconducting fluctuations, and we obtain the disorder induced superfluid order parameter and chemical potential through a self-consistent calculation. We also calculate the condensate fraction which reveals a distinct nonmonotonic behavior. The downturn in the latter result occurs at the crossover regime with gradual depletion on the BEC side. The non-monotonic feature in the condensate fraction data has been measured in clean systems. Motivated by the above result, we discuss the stability of a disordered fermionic superfluid in the crossover regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call