Abstract

The question of whether spatially inhomogeneous hopping in the two dimensional Hubbard model can lead to enhancement of superconductivity has been tackled by a number of authors in the context of the checkerboard Hubbard model (CHM). We address the effects of disorder on superconducting properties of the CHM by using exact diagonalization calculations for both potential and hopping disorder. We characterize the superconducting tendencies of the model by focusing on the pair binding energy, the spin gap, and d-wave pairing order parameter. We find that superconducting tendencies, particularly the pair binding energy, are more robust to disorder when there is inhomogeneous hopping than for the uniform Hubbard model. We also study all possible staggered potentials for an eight site CHM cluster and relate the behaviour of these configurations to the disordered system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.