Abstract

Topological insulators (TI) are a phase of matter that host unusual metallic states on their surfaces. Unlike the states that exist on the surface of conventional materials, these so-called topological surfaces states (TSS) are protected against disorder-related localization effects by time reversal symmetry through strong spin-orbit coupling. By combining transport measurements, angle-resolved photo-emission spectroscopy and scanning tunneling microscopy, we show that there exists a critical level of disorder beyond which the TI Bi2Se3 loses its ability to protect the metallic TSS and transitions to a fully insulating state. The absence of the metallic surface channels dictates that there is a change in topological character, implying that disorder can lead to a topological phase transition even without breaking the time reversal symmetry. This observation challenges the conventional notion of topologically-protected surface states, and will provoke new studies as to the fundamental nature of topological phase of matter in the presence of disorder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call