Abstract
Recent experiments on the Ba(3)XSb(2)O(9) family have revealed materials that potentially realize spin- and spin-orbital liquid physics. However, the lattice structure of these materials is complicated due to the presence of charged X(2+)-Sb(5+) dumbbells, with two possible orientations. To model the lattice structure, we consider a frustrated model of charged dumbbells on the triangular lattice, with long-range Coulomb interactions. We study this model using Monte Carlo simulation, and find a freezing temperature, T(frz), at which the simulated structure factor matches well to low-temperature x-ray diffraction data for Ba(3)CuSb(2)O(9). At T=T(frz) we find a complicated "branching" structure of superexchange-linked X(2+) clusters, which form a fractal pattern with fractal dimension d(f)=1.90. We show that this gives a natural explanation for the presence of orphan spins. Finally we provide a plausible mechanism by which such dumbbell disorder can promote a spin-orbital resonant state with delocalized orphan spins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.