Abstract
A systematic study on the modification of optical properties in mechanically milled ZnO powder has been reported here. The average grain size of the powder becomes ∼20 nm within 4 h of milling. Fluctuations of average grain size have been noticed at the initial stage of milling (within 15 min). Changes in grain morphology with milling have also been noticed in scanning electron micrographs of the samples. Room temperature optical absorption data shows a systematic red shift of absorption band edge (∼3.25 eV). The band tail parameter (extracted from the optical absorption just below the band edge) follows a simple exponential relation with the inverse of the average grain size. Significant increase of the band tail parameter has been noticed at low grain size regime. It has been analyzed that high values of band tail parameter is a representative of V Zn– V O type divacancy clusters. Room temperature photoluminescence spectra show decrease (except for 120 min milling) of band edge emission intensity with increase of milling time. Subsequent decrease of sub-band edge emission is, however, less prominent. The variation of PL intensity ratio (intensity at band edge peak with that at 2.3 eV) follows simple exponential decrease with the increase of band tail parameter. This indeed shows that band edge emission in ZnO is related with the overall disorder in the system, not grain size induced only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.