Abstract

We prove disorder chaos at zero temperature for three types of diluted models with large connectivity parameter: $K$-spin antiferromagnetic Ising model for even $K\geq2$, $K$-spin spin glass model for even $K\geq2$, and random $K$-sat model for all $K\geq2$. We show that modifying even a small proportion of clauses results in near maximizers of the original and modified Hamiltonians being nearly orthogonal to each other with high probability. We use a standard technique of approximating diluted models by appropriate fully connected models and then apply disorder chaos results in this setting, which include both previously known results as well as new examples motivated by the random $K$-sat model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.