Abstract
We investigate structural and electronic properties of B-C-N (boron-carbon-nitrogen) layers and nanotubes considering the positional disorder of the B, C, and N atoms, using a combination of first principles and simulated annealing calculations. During the annealing process, we find that the atoms segregate into isolated, irregularly shaped graphene islands immersed in BN. We also find that the formation of the carbon islands strongly affects the electronic properties of the materials. For instance, in the case of layers and nanotubes with the same number of B and N atoms, we find that the band gap increases during the simulated annealing. This indicates that, for a given stoichiometry, the electronic and optical properties of B-C-N layers and nanotubes can be tuned by growth kinetics. We also find that the excess of B or N atoms results in large variations in the band gap and work function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.