Abstract

To determine the effect of the cement type and abutment material on the tensile strength required to dislodge zirconia copings. Two experimental groups of abutments were prepared: (1) titanium abutments (n = 30) and (2) zirconia abutments (n = 30). Sixty zirconia copings (custom designed) were fabricated using 3-dimensional computer-assisted design to have a 6-mm projection above the abutment to accommodate a hole, through which a wire was inserted to attach the zirconia coping to a universal testing machine. Each abutment was placed onto an implant analog embedded in acrylic resin blocks to fit onto the universal testing machine. The zirconia copings were cemented onto the abutments with a provisional luting agent, zinc phosphate (ZP) cement, and adhesive resin cement, and after 5500 thermocycles, a tensile force was applied at a crosshead speed of 0.5 mm/min. The removal force was recorded for each specimen. Two-way analysis of variance (ANOVA) and 1-way ANOVA were used for the statistical analysis (P < 0.05). The mean forces necessary to remove the zirconia copings from titanium abutments were 6.52, 83.09, and 251.18 N for temporary cement, ZP cement, and resin cement, respectively. For zirconia abutments, the required forces were 17.82, 116.41, and 248.72 N. The abutment material had no effect on retention, but the cement type affected the retention of the zirconia copings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call