Abstract
Captan dislodgeable foliar residues (DFRs) were determined by following the applications of this fungicide in an apple orchard. The study comprised an investigation of the variability of captan DFR values and 14 days of DFR monitoring to assess kinetic modeling. A method combining solid-phase microextraction (SPME) gas chromatography and high-resolution mass spectrometry (GC-QTOF-MS) was developed for the quantification of captan residues from DFR aqueous extracts. The results evidenced that (1) sampling parameters such as the position of the tree in a row and the height of foliar significantly influenced captan DFR levels (247-1450 ng·cm-2), highlighting the need to implement a comprehensive sampling strategy; (2) the DFR captan dissipation kinetic model best matched with a biphasic one, with half-lives of DFRcaptan of 3.4 and 12.8 days, respectively, for the initial rapid phase 1 decline (day 0-5) and the slower phase 2 decline phase (day 6-14). Furthermore, through DFR measurements, the potential dermal exposure (PDE) of workers was assessed using transfer coefficients (TCs) from the literature. Compared to the acceptable operator exposure levels (AOELs), the results showed that the re-entry interval for captan may not sufficiently protect workers whose arms, hands, and legs are not covered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.