Abstract

At high pressure, Mg is expected to transform to the body-centered-cubic (BCC) phase. We use density functional theory to explore the structure of $\ensuremath{\langle}111\ensuremath{\rangle}$-type dislocation cores in BCC Mg as a function of pressure. As the pressure is reduced from the region of absolute stability for the BCC phase, the dislocation cores spread. When dislocation cores overlap the displacements of columns of atoms resemble the nanodisturbances observed in TiNb alloys known as gum metal. As the pressure is lowered further, these regions transform into the hexagonal close-packed phase. The ideal tensile strength of BCC Mg is also computed as a function of pressure. Despite its low shear modulus, BCC Mg is predicted to be intrinsically brittle at absolute zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.