Abstract

High voltage electron microscopy of silicon and GaAs layers grown by liquid phase epitaxy shows that two types of growth step sources are present. These consist of single dislocations with or without a Burgers vector component parallel to the macroscopic growth direction (longitudinal or transverse step sources respectively). A simple model is used to illustrate in particular the efficient nucleation of growth steps at transverse sources. Suitably positioned dislocations create morphologically stable patterns of equidistant widely spaced surface steps with monatomic height on otherwise atomically flat surfaces. Such growth surfaces result in interfaces with minimum disorder in multilayer growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.