Abstract

Dislocations were investigated in the halo-carbon low-temperature epitaxial growth and low-temperature selective epitaxial growth (LTSEG) conducted at 13000C. The origin of triangular defects was investigated in low-temperature epilayers grown at higher growth rates with HCl addition. Due to the conversion of substrates’ basal plane dislocations (BPD) into threading dislocations, the concentration of BPDs was about an order of magnitude lower than the concentration of threading dislocations at moderate growth rates. An additional order of magnitude conversion of BPDs into threading dislocations was observed at higher grow rates achieved with HCl addition. In LTSEG epilayers, dislocation concentration away from the mesa walls was comparable to the blanket (i.e., regular non-selective) growth. High concentrations of BPDs were found only at mesa edges located on the “upstream” side with respect to the step-flow direction. No substrate defects could be traced to the triangular defects. Instead, the disturbances causing the triangular defect generation are introduced during the epitaxial process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call