Abstract

The extension and distribution of dislocations and subgrain boundaries in highly magnesium-doped lithium niobate crystals at different stages of growth have been investigated using chemical etching and optical microscopy. The relations between dislocation densities, subgrain boundaries and optical quality of the crystals have been also studied. It was found that there is a core with relatively high dislocation density in the central region of the crystal shoulder. In the shouldering stage, the dislocations gathering in the core extend to its surrounding regions and the dislocation density tends to be homogeneous. Tailing increases the dislocation density in the bottom part of the crystal and causes inhomogeneous distribution of dislocations in that part. Subgrain boundaries are apt to form in high dislocation density regions, and neighbouring multiple subgrain boundaries tend to reform a more stable single subgrain boundary. The extinction ratios and conoscope images of crystals are worst in the dislocation gathering regions around the ends of subgrain boundaries, and dislocations are the basic cause of poor optical quality of crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.