Abstract

Layered metal composites have been widely used in various industries fields because of their excellent properties and are responsible for mechanical behavior of materials. This paper focuses on analyzing the deformation mechanism of the (110) interface under different loading states by MD. The results show that there are two yield points in the stress–strain curve under both Z- and Y-axis loading states. The first yield is the nucleation of dislocations at the interface, meantime the slip of dislocations and the extension of stacking faults begin at the Al layer. The second one, the dislocation passes through the interface, nucleates and emits toward the Cu layer at the interface, leading to a stress mutation. It is worth noting that during the stable rheological stage, the deformation mechanisms vary under different loading directions. Under Y-axis tensile loading, the phase transformation of FCC–HCP is present due to the interaction of dislocation movement and stacking fault. On the contrary, there are two twin paths A and B, improving the strength, during Z-axis compression loading. For other loading modes, there are three zones, namely the elastic stage, the release of energy, and strain hardening and dynamic softening. The interface plays the role of nucleation, annihilation and penetration of dislocations, and this interface-dislocation mechanism is reflected in the whole stage of plastic deformation. The results have an insight into the design and control in heterointerface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.