Abstract

Owing to their unique phase change property, GeSbTe alloys hold promise for applications as a candidate material for nonvolatile electronic data storage. In this paper, we theoretically investigate the dislocation mechanisms underlying the phase change phenomenon of GeSbTe alloys under electric pulses. On the basis of the recent experiments by Nam et al. (Science 336, 1561–1566 (2012)), a theoretical model is presented to rationalize the dislocation-templated amorphization process under the action of electric pulses. The physical mechanisms of the nucleation, movement, and multiplication of dislocations in the electric field are analyzed. Using the model, the evolutions of temperature and dislocation density in a Ge2Sb2Te5 nanowire under electric pulses are computed and the critical voltage of amorphization is predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.