Abstract

Synchrotron X-ray microdiffraction was used to characterize the deformation structure of single crystalline Cu micro-tensile specimens which were oriented for single slip. The 3-µm thick samples were strained in situ in a scanning electron microscope (SEM). Electron microscopy observations revealed glide steps at the surface indicating single slip. While the slip steps at the surface must have formed by the predominant activation of the primary glide system, analysis of Laue peak streaking directions revealed that, even at low strains, dislocations had been activated and stored on an unpredicted slip system. Furthermore, the µLaue scans showed that multiple slip takes over at a later state of deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.