Abstract

The interpretation of the Bordoni relaxation and of related relaxation phenomena in terms of the thermally activated, stress-assisted formation of kink pairs on dislocation lines is well established on assuming that the migration of kinks along dislocation lines is described by a high kink mobility μk. This assumption, however, is not valid if the activation enthalpy for kink migration, H m , is comparable with or even larger than the formation enthalpy of kink pairs or if even when small compared with the formation energy of kinks, H m is larger than the lowest thermal energies accessible in internal friction experiments. In those cases not only migration but also annihilation and trapping of thermal kink pairs may produce internal friction peaks. The difference-differential equations governing the thermal kink pairs evolution along dislocation lines under the action of a homogeneous applied shear stress are set up and their time-dependent solutions characterized by a set of relaxation times. It is shown how to obtain, from these solutions, the internal friction spectrum under conditions that are experimentally realized. Quantitative descriptions of geometrical kink migration and kink pair evolution are compared with selected experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.