Abstract

A GaN buffer layer grown under Ga-lean conditions by plasma-assisted molecular beam epitaxy (PAMBE) was used to reduce the dislocation density in a GaN film grown on a sapphire substrate. The Ga-lean buffer, with inclined trench walls on its surface, provided an effective way to bend the propagation direction of dislocations, and it reduced the dislocation density through recombination and annihilation processes. As a result, the edge dislocation density in the GaN film was reduced by approximately two orders of magnitude to 2 × 10 8 cm − 2 . The rough surface of the Ga-lean buffer was recovered using migration enhanced epitaxy (MEE), a process of alternating deposition cycle of Ga atoms and N 2 radicals, during the PAMBE growth. By combining these two methods, a GaN film with high-crystalline-quality and atomically-flat surface can be achieved by PAMBE on a lattice mismatch substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call