Abstract

A new dislocation punching model for a functionally graded material (FGM) subjected to a temperature change is proposed, using Eshelby's model. FGM, consisting of several layers, is deposited on a ceramic substrate. Two types of microstructures are examined for a layer: one consists of a metal matrix and ceramic particles and the other of a ceramic matrix and metal particles. An elastic energy is evaluated when plastic strain, in addition to thermal mismatch strain, is introduced in the metal phase. The work dissipated by the plastic deformation is also calculated. From the condition that the reduction in the elastic energy is larger than the work dissipated, a critical thermal mismatch strain to induce stress relaxation is determined. The magnitude of the plastic strain is also determined, when the relaxation occurs. The theory is applied to a model FGM consisting of mixtures of Pd and Al 2O 3 on an Al 2O 3 substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.