Abstract

Stressed dislocation pattern formation in crystal plasticity at finite deformation is demonstrated for the first time. Size effects are also demonstrated within the same mathematical model. The model involves two extra material parameters beyond the requirements of standard classical crystal plasticity theory. The dislocation microstructures shown are decoupled from deformation microstructures, and emerge without any consideration of latent hardening or constitutive assumptions related to cross-slip. Crystal orientation effects on the pattern formation and mechanical response are also demonstrated. The manifest irrelevance of the necessity of a multiplicative decomposition of the deformation gradient, a plastic distortion tensor, and the choice of a reference configuration in our model to describe the micromechanics of plasticity as it arises from the existence and motion of dislocations is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call