Abstract

A mesoscopic simulation of dislocations and plasticity in b.c.c. crystals at low temperatures is developed and applied to the case of Ta. The thermally activated nucleation of double kinks is taken as controlling the mobility of screw dislocations. The resulting temperature and strain rate dependence of the yield stress are investigated and a detailed thermal activation analysis is performed on the output of the simulations. It is shown that within the simplifications made to the input parameters and slip geometry, one is able to simulate realistic dislocation structures and mechanical response. By checking the conformity between the input and output, it is shown that the essential dislocation property (activation energy for screw dislocation motion) can effectively be deduced from the mechanical tests. The mesoscopic simulation provides a potential tool to link atomistic studies at the microscopic scale to the macroscopic modeling of mechanical properties of b.c.c. metals at low temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.