Abstract

The failure of superhard materials is often associated with stress-induced amorphization. However, the underlying mechanisms of the structural evolution remain largely unknown. Here, we report the experimental measurements of the onset of shear amorphization in single-crystal boron carbide by nanoindentation and transmission electron microscopy. We verified that rate-dependent loading discontinuity, i.e., pop-in, in nanoindentation load-displacement curves results from the formation of nanosized amorphous bands via shear amorphization. Stochastic analysis of the pop-in events reveals an exceptionally small activation volume, slow nucleation rate, and lower activation energy of the shear amorphization, suggesting that the high-pressure structural transition is activated and initiated by dislocation nucleation. This dislocation-mediated amorphization has important implications in understanding the failure mechanisms of superhard materials at stresses far below their theoretical strengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call