Abstract

Our study investigates the interaction of dislocations with hexagonal close-packed (hcp) and chi-phase (χ) particles in body-centred cubic (bcc) tungsten (W) using molecular dynamics simulations. The research aims to understand how these interactions influence the mechanical properties of W, particularly in the context of neutron irradiation environments. The simulations were conducted with spherical and cylindrical particles at various temperatures and cell sizes to observe the effects on critical shear stress. Results indicate that the shape and size of the particles significantly affect the critical shear stress required for dislocation movement, with cylindrical particles requiring higher stresses than spherical ones. Additionally, the study found that temperature variations have a more pronounced effect on χ-phase particles compared to hcp-phase particles. Our findings provide insights into the strengthening mechanisms in W-Re alloys and suggest potential pathways for enhancing the material’s performance under extreme conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.